Relations

- Relations: Definition and Notation
- Properties of Relations
- Combining Relations
- Operations on Relations: Projection and Join
- Equivalence Relations and Equivalence Classes

Partial Order

Imdad ullah Khan

Consider the following courses taken by CS students

- CS100: Introduction to Computing
- CS202: Data Structures
- CS210: Discrete Mathematics

- CS310: Algorithms
- CS341: Database Systems
- CS381: Operating Systems

< 3 > < 3 >

Consider the following courses taken by CS students

- CS100: Introduction to Computing
- CS202: Data Structures
- CS210: Discrete Mathematics

Order and dependencies among courses

- CS100 must be taken before all other courses
- CS202 and CS210 must be taken before CS310
- CS341 and CS381 can be taken in parallel

- CS310: Algorithms
- CS341: Database Systems
- CS381: Operating Systems

Consider the following courses taken by CS students

- CS100: Introduction to Computing
- CS202: Data Structures
- CS210: Discrete Mathematics

Order and dependencies among courses

- CS100 must be taken before all other courses
- CS202 and CS210 must be taken before CS310
- CS341 and CS381 can be taken in parallel

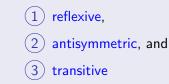
Such a system can be modeled using a relation called **partial order**

- CS310: Algorithms
- CS341: Database Systems
- CS381: Operating Systems

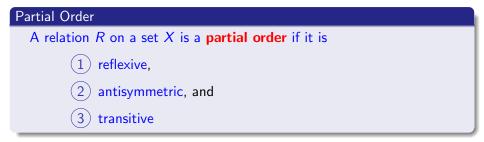
• • = • • = •

Partial Order

A relation R on a set X is a **partial order** if it is



- 4 回 ト 4 ヨ ト 4 ヨ ト



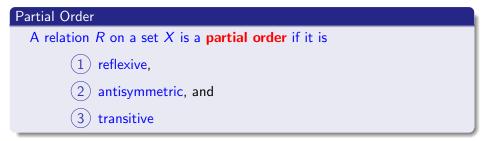
Partial orders give an order to sets that may not have a natural one.

For example pre-requisite order to courses

Notation: $a \preccurlyeq b \leftrightarrow (a, b) \in R$ and $a \prec b \leftrightarrow (a, b) \in R, a \neq b$

<日

<</p>



Partial orders give an order to sets that may not have a natural one.

For example pre-requisite order to courses

Notation: $a \preccurlyeq b \leftrightarrow (a, b) \in R$ and $a \prec b \leftrightarrow (a, b) \in R, a \neq b$

Pronounced as a preceeds b

Do not confuse \preccurlyeq with \leq $\qquad \preccurlyeq$ denotes partial ordering

Poset (Partially Ordered Set) (S, R)

A set S together with a partial order R, (S, R) is called a *poset*

 (\geq) relation is a partial ordering on the set of integers $\mathbb Z$

 $(\geq) = \big\{ \cdots (1,1), (1,0), (1,-2), (0,-5), (-5,-6), (3,2), (3,1), (3,-9) \cdots \big\}$

(日)

 (\geq) relation is a partial ordering on the set of integers $\mathbb Z$

$$(\geq) = ig\{\cdots(1,1),(1,0),(1,-2),(0,-5),(-5,-6),(3,2),(3,1),(3,-9)\cdotsig\}$$

■ $a \ge a$ for every integer a $\triangleright \ge$ is reflexive

If $a \ge b$ and $b \ge a$, then a = b $\triangleright \ge is$ antisymmetric

If $a \ge b$ and $b \ge c$, then $a \ge c$ $\triangleright \ge$ is transitive

 $\therefore \geq$ is a partial ordering on the set of integers and (\mathbb{Z}, \geq) is a poset

イロト 不得 トイヨト イヨト

 (\geq) relation is a partial ordering on the set of integers $\mathbb Z$

$$(\geq) = ig\{\cdots(1,1),(1,0),(1,-2),(0,-5),(-5,-6),(3,2),(3,1),(3,-9)\cdotsig\}$$

■ $a \ge a$ for every integer a $\triangleright \ge$ is reflexive

- If $a \ge b$ and $b \ge a$, then a = b $\triangleright \ge is$ antisymmetric
- If $a \ge b$ and $b \ge c$, then $a \ge c$ $\triangleright \ge$ is transitive

 $\therefore \geq$ is a partial ordering on the set of integers and (\mathbb{Z}, \geq) is a poset

ICP 6-33 Show that (\mathbb{Z}, \leq) is a poset.

イロト 不得 トイヨト イヨト 二日

The divisibility relation | is a partial ordering on the set of positive integers. i.e. $(\mathbb{Z}^+,|)$ is a poset

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

The divisibility relation | is a partial ordering on the set of positive integers. i.e. $(\mathbb{Z}^+,|)$ is a poset

- a|a whenever a is a positive integer \triangleright reflexive
- if a and $b \in \mathbb{Z}^+$ with a|b and b|a, then a = b \triangleright antisymmetric
- If a|b and b|c, then there are positive integers k and ℓ such that b = ak and c = bℓ. Hence, c = a(kℓ), so a|c ▷ transitive

Subset relation \subseteq is a partial ordering on the power set of a set S

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Subset relation \subseteq is a partial ordering on the power set of a set S

ICP 6-34 Let $S = \{a, b, c\}$. List all ordered pairs in \subseteq relation on $\mathcal{P}(S)$

イロト 不得 トイヨト イヨト

Subset relation \subseteq is a partial ordering on the power set of a set S

ICP 6-34 Let $S = \{a, b, c\}$. List all ordered pairs in \subseteq relation on $\mathcal{P}(S)$

• $A \subseteq A$ for all subsets A of S \triangleright \subseteq is reflexive

• if $A \subseteq B$ and $B \subseteq A$, then A = B $\triangleright \subseteq$ is antisymmetric

• If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ $\triangleright \subseteq$ is transitive

ICP 6-35 Let S be a set. Is $(\mathcal{P}(S), \subset)$ a poset ?

Let R be a relation on set of people s.t $(x, y) \in R$ if x is older than y

э

Let R be a relation on set of people s.t $(x, y) \in R$ if x is older than y

- If x is older than y, then y cannot be older than x ▷ R is antisymmetric
- if x is older than y and y is older than z, then x is older than z ▷ R is transitive
- A person cannot be older than him/herself \triangleright *R* is **Not Reflexive**
- \therefore *R* is not a partial order

The elements *a* and *b* of a poset (S, \preccurlyeq) are called *comparable* if either $a \preccurlyeq b$ or $b \preccurlyeq a$, otherwise they are *incomparable*

In the (courses, prerequisites) poset

- CS100 ≺ CS210 (comparable)
- CS210 and CS202 are (not comparable)

The elements *a* and *b* of a poset (S, \preccurlyeq) are called *comparable* if either $a \preccurlyeq b$ or $b \preccurlyeq a$, otherwise they are *incomparable*

In the (courses, prerequisites) poset

- CS100 ≺ CS210 (comparable)
- CS210 and CS202 are (not comparable)

In the poset $(\mathbb{Z}^+, |)$:

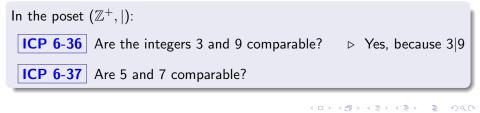
ICP 6-36 Are the integers 3 and 9 comparable?

イロト イポト イヨト イヨト

The elements *a* and *b* of a poset (S, \preccurlyeq) are called *comparable* if either $a \preccurlyeq b$ or $b \preccurlyeq a$, otherwise they are *incomparable*

In the (courses, prerequisites) poset

- CS100 ≺ CS210 (comparable)
- CS210 and CS202 are (not comparable)



The elements *a* and *b* of a poset (S, \preccurlyeq) are called *comparable* if either $a \preccurlyeq b$ or $b \preccurlyeq a$, otherwise they are *incomparable*

In the (courses, prerequisites) poset

- CS100 ≺ CS210 (comparable)
- CS210 and CS202 are (not comparable)

In the poset $(\mathbb{Z}^+, |)$: ICP 6-36 Are the integers 3 and 9 comparable? \triangleright Yes, because 3|9 ICP 6-37 Are 5 and 7 comparable? \triangleright No, because 5 \nmid 7 and 7 \nmid 5

イロト イボト イヨト イヨト

Total Order

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered set*. The relation \preccurlyeq is called a *total* or *linear order*

- 4 回 ト 4 ヨ ト 4 ヨ ト

Total Order

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered set*. The relation \preccurlyeq is called a *total* or *linear order*

- The relation "≤" on the set of integers is a total order; (Z, ≤) since for every a, b ∈ Z, it must be the case that a < b or b < a</p>
- What happens if we replace \leq with < ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Total Order

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered set*. The relation \preccurlyeq is called a *total* or *linear order*

- The relation "≤" on the set of integers is a total order; (Z, ≤) since for every a, b ∈ Z, it must be the case that a < b or b < a</p>
- What happens if we replace ≤ with < ?
 - (Z, <) is not even a poset (non-reflexive) \therefore not a total order
- (ℤ⁺, |) is not totally ordered because it contains elements that are incomparable, such as 5 and 7

Now it should be clear why partial orders are called "partial"

イロト 不得 トイラト イラト 一日

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

Is (\mathbb{Z}, \leq) a well-ordered set?

<日

<</p>

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset?

< 同 > < 三 > < 三 >

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset?

⊳ Yes

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset?

 \triangleright Yes

Is it totally ordered?

< 同 > < 三 > < 三 >

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset? ▷ Yes
 - Is it totally ordered? ▷ Yes

<日

<</p>

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset? ▷ Yes
 - Is it totally ordered? ▷ Yes
 - Does every nonempty subset of Z have a least element?

- 4 回 ト 4 三 ト 4 三 ト

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset? ▷ Yes
 - Is it totally ordered? ▷ Yes
 - Does **every** nonempty subset of \mathbb{Z} have a least element? $\mathbb{Z} \subseteq \mathbb{Z}$. What is its least element?

(本語) (本語) (本語)

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element

The natural numbers along with \leq , (\mathbb{N}, \leq) is a well-ordered set since any subset of \mathbb{N} will have a least element and \leq is a total ordering on \mathbb{N}

- Is (\mathbb{Z}, \leq) a well-ordered set?
 - Is it a poset? ▷ Yes
 - Is it totally ordered? ▷ Yes
 - Does **every** nonempty subset of \mathbb{Z} have a least element? $\mathbb{Z} \subseteq \mathbb{Z}$. What is its least element?

We don't know. \mathbb{Z} is unbounded from below (and above)

イロト 不得下 イヨト イヨト

Hasse Diagrams

A poset (S, \preccurlyeq) can be represented by a digraph

- Each element $a \in S$ is a node
- if $a \preccurlyeq b$, then (a, b) is an edge

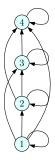
Constructing Hasse diagram:

- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

★ ∃ ► < ∃ ►</p>

- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

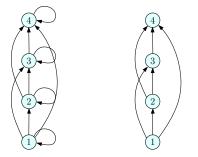
Hasse diagram of ($\{1, 2, 3, 4\}, \leq$)



- E > - E >

- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

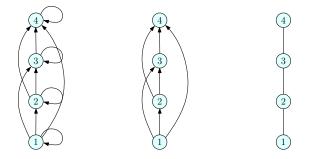
Hasse diagram of ($\{1, 2, 3, 4\}, \leq$)



- E > - E >

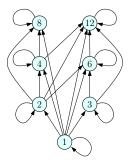
- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

Hasse diagram of ($\{1, 2, 3, 4\}, \leq$)



- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

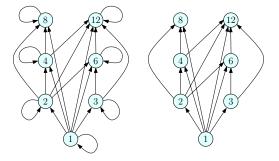
Hasse diagram of $(\{1, 2, 3, 4, 6, 8, 12\}, |)$



- E > - E >

- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

Hasse diagram of $(\{1, 2, 3, 4, 6, 8, 12\}, |)$



- Remove all self-loops
- Remove all transitive edges
- Remove directions assume that the orientations are upwards

Hasse diagram of $(\{1, 2, 3, 4, 6, 8, 12\}, |)$

